Formation of White Dwarf Main-sequence stars, including the sun, form from clouds of dust and gas drawn together by gravity. How the stars evolve through their lifetime depends on their mass. The most massive stars, with eight times the mass of the sun or more, will never become white dwarfs. Instead, at the end of their lives, they will explode in a violent supernova, leaving behind a neutron star or black hole. Smaller stars, however, will take a slightly more sedate path. Low- to medium-mass stars, such as the sun, will eventually swell up into red giants. After that, the stars shed their outer layers into a ring known as a planetary nebula (early observers thought the nebulas resembled planets such as Neptune and Uranus). The core that is left behind will be a white dwarf, a husk of a star in which no hydrogen fusion occurs. Smaller stars, such as red dwarfs, don't make it to the red giant state. They simply burn through all of their hydrogen, ending the process as a dim